Google Scholar (論文の引用回数がわかります)



* 責任著者

  1. Uchiyama J, Roy R, Wang DO, Morikawa K, Kawahara Y, Iwasaki M, Yoshino C, Mishima Y, *Ishihama Y, *Imami K. (2022) pSNAP: Proteome-wide analysis of elongating nascent polypeptide chains. iScience. doi:

  2. *Mishima Y, Han P, Ishibashi K, Kimura S, Iwasaki S. (2022) Ribosome slowdown triggers codon-mediated mRNA decay independently of ribosome quality control. The EMBO Journal e109256

プレスリリース 京都新聞(2022年2月2日) 日刊工業新聞(2022年1月24日)

  1. *Mishima Y and Inoue K. (2021) Tethered function assay to study RNA regulatory proteins in zebrafish embryos. Methods in Molecular Biology 2218:347-354.

  2. Mito M, Mishima Y, *Iwasaki S. (2020) Protocol for Disome Profiling to Survey Ribosome Collision in Humans and Zebrafish. STAR Protocols 1:100168

  3. Han P, Shichino Y, Schneider-Poetsch T, Mito M, Hashimoto S, Udagawa T, Kohno K, Tanaka M, Mishima Y, Inada T, *Iwasaki S. (2020) Genome-wide survey of ribosome collision. Cell Reports 31(5): 107610


  1. Fujino Y, Yamada K, Sugaya C, Ooka Y, Ovara H, Ban H, Akama K, Otosaka S, Kinoshita H, Yamasu K, Mishima Y and *Kawamura A. (2018) Deadenylation by the CCR4-NOT complex contributes to the turnover of hairy-related mRNAs in the zebrafish segmentation clock. FEBS Letters 592(20):3388-3398.

  2. *Mishima Y (2018) PAINTing translation. Nature Chemical Biology 14(9):832–833. News & View

  3. *Mishima Y and Tomari Y. (2017) Pervasive yet nonuniform contributions of Dcp2 and Cnot7 to maternal mRNA clearance in zebrafish. Genes to Cells 22(7):670-678

  4. *Mishima Y and Tomari Y. (2016) Codon usage and 3' UTR length determine maternal mRNA stability in zebrafish. Molecular Cell 61(6):874-885.

Trends in Geneticsの解説記事

  1. Makino S, *Mishima Y, Inoue K, *Inada T. (2015) Roles of mRNA-fate modulators Dhh1 and Pat1 in TNRC6-dependent gene silencing recapitulated in yeast. The Journal of Biological Chemistry 290(13):8331-47.

  2. Fukao A, Mishima Y, Takizawa N, Oka S, Imataka H, Pelletier J, Sonenberg N, Thoma C, *Fujiwara T. (2014) microRNAs trigger dissociation of eIF4AI and II from target mRNAs in humans. Molecular Cell 56(1):79-89.

  3. Hirose T, Mishima Y, *Tomari Y. (2014) Elements and machinery of non-coding RNAs: toward their taxonomy. EMBO Reports 15(5):489-507 Review

  4. Stahlhut C, Lu J, Suarez C, *Mishima Y, *Giraldez AJ. (2012) miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression. Development 139(23):4356-65

  5. *Mishima Y, Fukao A, Kishimoto T, Sakamoto H, Fujiwara T, *Inoue K. (2012) Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proceedings of the National Academy of Sciences U.S.A. 109 (4):1104-9

  6. *Mishima Y. (2012) Widespread roles of microRNAs during zebrafish development and beyond. Development Growth and Differentiation 54(1):55-65. Review

  7. Cifuentes D, Xue H, Taylor D.W, Patnode H, Mishima Y, Cheloufi S, Ma E, Mane S, Hannon GJ, Lawson N, Wolfe S, *Giraldez AJ. (2010) A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328(5986): 1694-8

  8. Takeda Y, Mishima Y, Fujiwara T, Sakamoto H, *Inoue K. (2009) DAZL relieves miRNA-mediated repression of germline mRNAs by controlling poly(A) tail length in zebrafish. PLoS ONE 4: e7513

  9. Mishima Y, Abreu-Goodger C, Staton AA, Stahlhut C, Shou C, Cheng C, Gerstein M, Enright AJ, *Giraldez AJ. (2009) Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes & Development 23(5):619-32.

  10. Mishima Y, Stahlhut C, *Giraldez AJ. (2007) miR-1-2 gets to the heart of the matter. Cell 129(2):247-9. Review

  11. Mishima Y, Giraldez AJ, Takeda Y, Fujiwara T, Sakamoto H, *Schier A.F, *Inoue K. (2006) Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Current Biology 16(21):2135-42.

  12. *Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright A.J, *Schier AF. (2006) Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312(5770):75-9

  13. Yamakita S, Mishima Y, *Ikenishi K. (2004) A novel gene the protein product of which is mainly expressed in germline cells and in the dorsal structures of Xenopus. Development Genes and Evolution 214(2):89-95.


  1. 三嶋雄一郎 (分担執筆)(2020)動物の事典 3.7.2 マイクロRNA 3.7.3 RNA干渉法(朝倉書店)

  2. 三嶋雄一郎(2019)遺伝暗号による遺伝子発現制御 生体の科学 vol.70 No.2 162-167(医学書院)

  3. 三嶋雄一郎(2016)DOJIN BIOSCIENCEシリーズ「ノンコーディングRNA」第9章 動物発生とsmall RNA(化学同人)

  4. 三嶋雄一郎(2015)miRNAの網羅的解析 実験医学増刊号「ノンコーディングRNAテキストブック」vol.33 No.20 44-45(羊土社)

  5. 三嶋雄一郎(2013)microRNAはどのようにして標的mRNAを抑制するのか? 実験医学増刊号「生命分子を統合するRNA」 vol.31 No.7 1165-1170(羊土社)

  6. 三嶋雄一郎(2009)ゼブラフィッシュmiR-1と miR-133は骨格筋の遺伝子発現と筋節アクチンを制御する 実験医学 vol.27 No.14 2244-2247(羊土社)

  7. 三嶋雄一郎、井上邦夫(2008)ゼブラフィッシュ胚からのRNA抽出 RNA実験ノート上巻 29-32(羊土社)

  8. 三嶋雄一郎、井上邦夫(2008)whole mount in situハイブリダイゼーションによるmiRNAの発現解析 RNA実験ノート下巻 77-83(羊土社)

  9. 三嶋雄一郎、井上邦夫(2007) microRNAによるゼブラフィッシュ初期発生制御機構 実験医学 25 823-828(羊土社)

  10. 三嶋雄一郎、坂本 博、井上邦夫 (2004) mRNA局在化の分子機構 実験医学 増刊号「躍進するRNA研究」 22 2454-2460(羊土社)